Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Species living in distinct habitats often experience unique ecological selective pressures, which can drive phenotypic divergence. However, how ecophenotypic patterns are affected by allometric trends and trait integration levels is less well understood. Here we evaluate the role of allometry in shaping body size and body form diversity in Pristurus geckos utilizing differing habitats. We found that patterns of allometry and integration in body form were distinct in species with different habitat preferences, with ground-dwelling Pristurus displaying the most divergent allometric trend and high levels of integration. There was also strong concordance between intraspecific allometry across individuals and evolutionary allometry among species, revealing that differences in body form among individuals were predictive of evolutionary changes across the phylogeny at macroevolutionary scales. This suggested that phenotypic evolution occurred along allometric lines of least resistance, with allometric trajectories imposing a strong influence on the magnitude and direction of size and shape changes across the phylogeny. When viewed in phylomorphospace, the largest rock-dwelling species were most similar to the smallest ground-dwelling species, and vice versa. Thus, in Pristurus, phenotypic evolution along the differing habitat-based allometric trajectories resulted in similar body forms at differing body sizes in distinct ecological habitats.more » « less
-
ABSTRACT AimWe assess the systematic relationships and historical biogeographic patterns in the subfamily Scincinae, a group of lizards that primarily inhabits the Afro‐Madagascan and Saharo‐Arabian regions with isolated lineages in Europe, North America, East Asia, India and Sri Lanka. The contemporary distribution of these lineages on the historical Laurasian and Gondwanan landmasses make scincines an ideal system to study the roles of vicariance and dispersal on a geologic scale of tens of millions of years. LocationGlobal. TaxonSubfamily Scincinae (Family Scincidae). MethodsWe conducted biogeographic analyses on a reconstructed, time‐calibrated species tree of scincine genera, including members of the other Scincidae subfamilies, using seven nuclear loci (~6 k base pairs). We also constructed a lineage‐through‐time plot to assess the timing of diversification within scincines. ResultsOur analysis estimated strong support for the monophyly of Scincinae that is further comprised a strongly‐supported Gondwanan clade nested within a broader Laurasian group. While most of the extant, genus‐level diversity within the Gondwanan clade was accrued post‐Eocene, the majority of the Laurasian lineages diverged during the Palaeocene or earlier, suggesting large‐scale extinctions on continents of Laurasian origin. Counterintuitively, scincines from India and Sri Lanka have distinct biogeographical origins despite a long tectonic association between these landmasses, suggesting at least two independent, long‐distance, trans‐oceanic dispersal events into the subcontinent. Our biogeographic analyses suggest that scincines likely originated in East and Southeast Asia during the late Cretaceous (ca. 70 Ma), and eventually dispersed westwards to Africa and Madagascar, where their greatest current‐day species richness occurs. Main ConclusionsOur study demonstrates the concomitant roles of dispersal and extinction in shaping modern‐day assemblages of ancient clades such as scincine lizards. Our range evolution analysis shows that despite the greater diversity observed in the Afro‐Madagascan region, the origin of scincines can be traced back to Southeast Asia and East Asia, followed by westward dispersals. These dispersals may have been followed by significant extinctions in tropical East Asia, resulting in relatively lower diversity of scincines in these regions. Notably, our analysis reveals that Sri Lankan and Peninsular Indian scincines have distinct evolutionary origins.more » « less
An official website of the United States government
